(Map source: Bartolino 1979)
usgs <- read.csv("data/usgs.csv")
head(usgs, 1)
## Month ATRISCO_1_SP24.79 ATRISCO_2_SP22.79 ATRISCO_3_SP22.79
## 1 1/1/2001 13780000 5260000 17550000
## ATRISCO_4_SP22.79 BURTON_1_SP30.79 BURTON_2_SP14.79 BURTON_3_SP14.79
## 1 17540000 23620000 20750000 10290000
## BURTON_4_SP30.79 BURTON_5_SP37.79 CHARLES_1_SP16.79 CHARLES_2_SP16.79
## 1 20630000 47250000 0 0
## CHARLES_3_SP16.79 CHARLES_4_SP16.79 CHARLES_5_SP33.79 COLLEGE_1_SP23.79
## 1 52130000 46420000 36870000 60000
## COLLEGE_2_SP23.79 CORONADO_1_SP30.79 CORONADO_2_SP39.79
## 1 10210000 43150000 28310000
## DURANES_1_SP13.79 DURANES_2_SP13.79 DURANES_3_SP12.79 DURANES_4_SP12.79
## 1 0 0 0 0
## DURANES_5_SP12.79 DURANES_6_SP12.79 DURANES_7_SP12.79 GONZALES_1_SP39.79
## 1 0 0 0 17450000
## GONZALES_2_SP36.79 GONZALES_3_SP52.79 GRIEGOS_1_SP13.79
## 1 25020000 0 8870000
## GRIEGOS_3_SP12.79 GRIEGOS_4_SP12.79 LEAVITT_1_SP17.79 LEAVITT_2_SP17.79
## 1 12150000 7200000 14570000 14370000
## LEAVITT_3_SP30.79 LEYENDCKR_1_SP13.79 LEYENDCKR_2_SP13.79
## 1 15610000 9170000 10810000
## LEYENDCKR_3_SP13.79 LEYENDCKR_4_SP13.79 LOMAS_1_SP14.79 LOMAS_5_SP30.79
## 1 31540000 40750000 21040000 0
## LOMAS_6_SP30.79 LOVE_1_SP13.79 LOVE_3_SP13.79 LOVE_4_SP13.79
## 1 0 0 32930000 41280000
## LOVE_5_SP13.53 LOVE_6_SP16.79 LOVE_7_SP16.79 LOVE_8_SP16.79
## 1 0 8920000 21080000 47940000
## METRODETCTR_SP58.79 MILES_1_SP19.65 NM_UTL_1_SP14.79 NM_UTL_2_SP15.79
## 1 NA 22670000 NA NA
## NM_UTL_3_SP23.79 NM_UTL_4_SP43.79 NM_UTL_5_SP49.79 NM_UTL_7 NM_UTL_8
## 1 NA NA NA NA NA
## NM_UTL_9 PONDEROSA_2_SP16.79 PONDEROSA_3_SP19.65 PONDEROSA_4_SP21.79
## 1 NA 25440000 20610000 17030000
## PONDEROSA_6_SP21.79 RIDGECREST_1_SP15.79 RIDGECREST_2_SP19.79
## 1 9510000 12420000 32190000
## RIDGECREST_3_SP16.79 RIDGECREST_4_SP16.79 RIDGECREST_5_SP35.79
## 1 23840000 28970000 77210000
## SAN_JOSE_1_SP12.58 SAN_JOSE_2A_SP30.79 SAN_JOSE_3A_SP22.79
## 1 1080000 16690000 25680000
## SANTABAR_1_SP15.79 THOMAS_1_SP13.79 THOMAS_2_SP13.64 THOMAS_3_SP13.56
## 1 68480000 0 4260000 0
## THOMAS_4_SP13.79 THOMAS_5_SP33.79 THOMAS_6_SP33.79 THOMAS_7_SP33.79
## 1 13990000 32120000 18270000 34140000
## THOMAS_8_SP39.79 VOLANDIA_1_SP14.79 VOLANDIA_2_SP14.79
## 1 17680000 46800000 34590000
## VOLANDIA_3_SP14.79 VOLANDIA_4_SP14.79 VOLANDIA_5_SP14.79
## 1 21250000 5860000 38630000
## VOLANDIA_6_SP14.79 VOLCLIFFS_1_SP16.79 VOLCLIFFS_2_SP16.79
## 1 35620000 0 21620000
## VOLCLIFFS_3_SP30.79 WALKER_1_SP28.79 WALKER_2_SP31.79 WALKER_3_SP44.79
## 1 35670000 10730000 5800000 0
## WALKER_4_SP44.79 WEBSTER_1_SP23.79 WEBSTER_2_SP23.79 WEST_MESA_1_SP13.79
## 1 24680000 30070000 11110000 7270000
## WEST_MESA_3_SP16.54 WEST_MESA_4_SP17.69 YALE_1_SP17.79 YALE_2_SP16.79
## 1 0 47220000 33100000 9e+05
## YALE_3_SP16.79 ZAMORA_1_SP39.79 ZAMORA_2_SP49.79
## 1 7330000 12450000 46170000
This dataset has 202 sampling sites.
plot(faithful, main = "Do I wait longer for longer eruptions?")
Visual Basic for Applications (VBA)
code and Structured Query Language (SQL) code are products of the project. All updateable datasets are acquired from the original data source (for example, EPA websites).Microsoft Access Database format will be used since it is readily-accessible and it is compatible with ESRI ArcGIS, a Geographic Information System software package used by the stakeholders. Naming conventions will be consistent – no spaces will be used in table names or field names. The file naming convention will consist of the data source_data type format for raw data files. Data reporting functionality will be built into the VBA processing programs to provide output in .txt file format for number of records per source when updatable data sources are refreshed.
Every effort will be made to go back to the authoritative source for an identified dataset. Quality control of the database will be performed using SQL statements that capitalize on the database structure to ensure relational database integrity. Appropriate primary keys will be assigned to manage possible data duplicates. Potential duplicate site IDs, will be handled through automated procedures and the creation of alternate ID tables.
A data dictionary will be created that defines the table definition, table fields, and table field data types. An entity-relationship diagram will be created that defines the relational structure of the database. A metadata record will be produced using the FGDC standard that describes the entire geodatabase.1
The data are public and will be obtainable thru the New Mexico Interstate Stream Commission (NMISC). Users of the data will primarily be water resource managers in the Rio Grande Basin. USGS publications will be released describing the methods and data sources and can be used as documentation for the data and to cite the data.
Access to databases and associated software tools generated under the project will be available for educational, research and non-profit purposes. Such access will be provided using web-based applications, as appropriate.
Materials generated under the project will be disseminated in accordance with University/Participating institutional and NSF policies. (See, for example, Briney, Goben, and Zilinski 2015). Depending on such policies, materials may be transferred to others under the terms of a material transfer agreement.
The data files have a suggested citation, which will be described in the metadata in addition to the USGS publications.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Bartolino, Bart. 1979. “Map of the Middle Rio Grande Basin.”
Briney, Kristin, Abigail Goben, and Lisa Zilinski. 2015. “Do You Have an Institutional Data Policy? A Review of the Current Landscape of Library Data Services and Institutional Data Policies.” Journal of Librarianship and Scholarly Communication 3 (2). Pacific University Library. doi:10.7710/2162-3309.1232.
The FGDC standard was chosen due to required Federal government standards.↩